InfluxDB.Client.Linq 4.19.0-dev.15189

This is a prerelease version of InfluxDB.Client.Linq.
There is a newer prerelease version of this package available.
See the version list below for details.
dotnet add package InfluxDB.Client.Linq --version 4.19.0-dev.15189                
NuGet\Install-Package InfluxDB.Client.Linq -Version 4.19.0-dev.15189                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="InfluxDB.Client.Linq" Version="4.19.0-dev.15189" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add InfluxDB.Client.Linq --version 4.19.0-dev.15189                
#r "nuget: InfluxDB.Client.Linq, 4.19.0-dev.15189"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install InfluxDB.Client.Linq as a Cake Addin
#addin nuget:?package=InfluxDB.Client.Linq&version=4.19.0-dev.15189&prerelease

// Install InfluxDB.Client.Linq as a Cake Tool
#tool nuget:?package=InfluxDB.Client.Linq&version=4.19.0-dev.15189&prerelease                

InfluxDB.Client.Linq

The library supports to use a LINQ expression to query the InfluxDB.

Documentation

This section contains links to the client library documentation.

Usage

How to start

First, add the library as a dependency for your project:

# For actual version please check: https://www.nuget.org/packages/InfluxDB.Client.Linq/

dotnet add package InfluxDB.Client.Linq --version 1.17.0-dev.linq.17

Next, you should add additional using statement to your program:

using InfluxDB.Client.Linq;

The LINQ query depends on QueryApiSync, you could create an instance of QueryApiSync by:

var client = new InfluxDBClient("http://localhost:8086", "my-token");
var queryApi = client.GetQueryApiSync();

In the following examples we assume that the Sensor entity is defined as:

class Sensor
{
    [Column("sensor_id", IsTag = true)] 
    public string SensorId { get; set; }

    /// <summary>
    /// "production" or "testing"
    /// </summary>
    [Column("deployment", IsTag = true)]
    public string Deployment { get; set; }

    /// <summary>
    /// Value measured by sensor
    /// </summary>
    [Column("data")]
    public float Value { get; set; }

    [Column(IsTimestamp = true)] 
    public DateTime Timestamp { get; set; }
}

Time Series

The InfluxDB uses concept of TimeSeries - a collection of data that shares a measurement, tag set, and bucket. You always operate on each time-series, if you querying data with Flux.

Imagine that you have following data:

sensor,deployment=production,sensor_id=id-1 data=15
sensor,deployment=testing,sensor_id=id-1 data=28
sensor,deployment=testing,sensor_id=id-1 data=12
sensor,deployment=production,sensor_id=id-1 data=89

The corresponding time series are:

  • sensor,deployment=production,sensor_id=id-1
  • sensor,deployment=testing,sensor_id=id-1

If you query your data with following Flux:

from(bucket: "my-bucket")
  |> range(start: 0)
  |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
  |> drop(columns: ["_start", "_stop", "_measurement"])
  |> limit(n:1)

The result will be one item for each time-series:

sensor,deployment=production,sensor_id=id-1 data=15
sensor,deployment=testing,sensor_id=id-1 data=28

and this is also way how this LINQ driver works.

The driver supposes that you are querying over one time-series.

There is a way how to change this configuration:

Enable querying multiple time-series

var settings = new QueryableOptimizerSettings{QueryMultipleTimeSeries = true};
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", _queryApi, settings)
    select s;

The group() function is way how to query multiple time-series and gets correct results.

The following query works correctly:

from(bucket: "my-bucket")
  |> range(start: 0)
  |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
  |> drop(columns: ["_start", "_stop", "_measurement"])
  |> group()
  |> limit(n:1)

and corresponding result:

sensor,deployment=production,sensor_id=id-1 data=15

Do not used this functionality if it is not required because it brings a performance costs caused by sorting:

Group does not guarantee sort order

The group() does not guarantee sort order of output records. To ensure data is sorted correctly, use orderby expression.

Client Side Evaluation

The library attempts to evaluate a query on the server as much as possible. The client side evaluations is required for aggregation function if there is more then one time series.

If you want to count your data with following Flux:

from(bucket: "my-bucket")
  |> range(start: 0)
  |> drop(columns: ["_start", "_stop", "_measurement"])
  |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
  |> stateCount(fn: (r) => true, column: "linq_result_column") 
  |> last(column: "linq_result_column") 
  |> keep(columns: ["linq_result_column"])

The result will be one count for each time-series:

#group,false,false,false
#datatype,string,long,long
#default,_result,,
,result,table,linq_result_column
,,0,1
,,0,1

and client has to aggregate this multiple results into one scalar value.

Operators that could cause client side evaluation:

  • Count
  • CountLong

TL;DR

Perform Query

The LINQ query requires bucket and organization as a source of data. Both of them could be name or ID.

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.SensorId == "id-1"
    where s.Value > 12
    where s.Timestamp > new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    where s.Timestamp < new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
    orderby s.Timestamp
    select s)
    .Take(2)
    .Skip(2);

var sensors = query.ToList();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15Z, stop: 2021-01-10T05:10:00Z) 
    |> filter(fn: (r) => (r["sensor_id"] == "id-1")) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] > 12)) 
    |> limit(n: 2, offset: 2)

Filtering

The range() and filter() are pushdown functions that allow push their data manipulation down to the underlying data source rather than storing and manipulating data in memory. Using pushdown functions at the beginning of query we greatly reduce the amount of server memory necessary to run a query.

The LINQ provider needs to aligns fields within each input table that have the same timestamp to column-wise format:

From
_time _value _measurement _field
1970-01-01T00:00:00.000000001Z 1.0 "m1" "f1"
1970-01-01T00:00:00.000000001Z 2.0 "m1" "f2"
1970-01-01T00:00:00.000000002Z 3.0 "m1" "f1"
1970-01-01T00:00:00.000000002Z 4.0 "m1" "f2"
To
_time _measurement f1 f2
1970-01-01T00:00:00.000000001Z "m1" 1.0 2.0
1970-01-01T00:00:00.000000002Z "m1" 3.0 4.0

For that reason we need to use the pivot() function. The pivot is heavy and should be used at the end of our Flux query.

There is an also possibility to disable appending pivot by:

var optimizerSettings =
    new QueryableOptimizerSettings
    {
        AlignFieldsWithPivot = false
    };
    
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi, optimizerSettings)
    select s;

Mapping LINQ filters

For the best performance on the both side - server, LINQ provider we maps the LINQ expressions to FLUX query following way:

Filter by Timestamp

Mapped to range().

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp >= new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15ZZ) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
Filter by Tag

Mapped to filter() before pivot().

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.SensorId == "id-1"
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> filter(fn: (r) => (r["sensor_id"] == "id-1"))  
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
Filter by Field

The filter by field has to be after the pivot() because we want to select all fields from pivoted table.

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value < 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")  
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] < 28))

If we move the filter() for fields before the pivot() then we will gets wrong results:

Data
m1 f1=1,f2=2 1
m1 f1=3,f2=4 2
Without filter
from(bucket: "my-bucket") 
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])

Results:

_time f1 f2
1970-01-01T00:00:00.000000001Z 1.0 2.0
1970-01-01T00:00:00.000000002Z 3.0 4.0
Filter before pivot()

filter: f1 > 0

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> filter(fn: (r) => (r["_field"] == "f1" and r["_value"] > 0))
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])

Results:

_time f1
1970-01-01T00:00:00.000000001Z 1.0
1970-01-01T00:00:00.000000002Z 3.0

Time Range Filtering

The time filtering expressions are mapped to Flux range() function. This function has start and stop parameters with following behaviour: start <= _time < stop:

Results include records with _time values greater than or equal to the specified start time and less than the specified stop time.

This means that we have to add one nanosecond to start if we want timestamp greater than and also add one nanosecond to stop if we want to timestamp lesser or equal than.

Example 1:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp > new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    where s.Timestamp < new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

start_shifted = int(v: time(v: "2019-11-16T08:20:15Z")) + 1

from(bucket: "my-bucket") 
    |> range(start: time(v: start_shifted), stop: 2021-01-10T05:10:00Z)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
Example 2:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp >= new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    where s.Timestamp <= new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

stop_shifted = int(v: time(v: "2021-01-10T05:10:00Z")) + 1

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15Z, stop: time(v: stop_shifted)) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
Example 3:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp >= new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15ZZ) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
Example 4:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp <= new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

stop_shifted = int(v: time(v: "2021-01-10T05:10:00Z")) + 1

from(bucket: "my-bucket") 
    |> range(start: 0, stop: time(v: stop_shifted))
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
Example 5:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp == new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

stop_shifted = int(v: time(v: "2019-11-16T08:20:15Z")) + 1

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15Z, stop: time(v: stop_shifted)) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])

There is also a possibility to specify the default value for start and stop parameter. This is useful when you need to include data with future timestamps when no time bounds are explicitly set.

var settings = new QueryableOptimizerSettings
{
    RangeStartValue = DateTime.UtcNow.AddHours(-24),
    RangeStopValue = DateTime.UtcNow.AddHours(1)
};
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi, settings)
    select s;

TD;LR

Supported LINQ operators

Equal

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.SensorId == "id-1"
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> filter(fn: (r) => (r["sensor_id"] == "id-1"))  
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])

Not Equal

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.SensorId != "id-1"
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> filter(fn: (r) => (r["sensor_id"] != "id-1")) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])

Less Than

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value < 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] < 28))

Less Than Or Equal

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value <= 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] <= 28))

Greater Than

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value > 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] > 28))

Greater Than Or Equal

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value >= 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] >= 28))

And

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value >= 28 && s.SensorId != "id-1"
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> filter(fn: (r) => (r["sensor_id"] != "id-1"))
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] >= 28))

Or

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value >= 28 || s.Value <= 5
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => ((r["data"] >= 28) or (r["data"] <=> 28)))

Any

The following code demonstrates how to use the Any operator to determine whether a collection contains any elements. By default the InfluxDB.Client doesn't supports to store a subcollection in your DomainObject.

Imagine that you have following entities:

class SensorCustom
{
    public Guid Id { get; set; }
    
    public float Data { get; set; }
    
    public DateTimeOffset Time { get; set; }
    
    public virtual ICollection<SensorAttribute> Attributes { get; set; }
}

class SensorAttribute
{
    public string Name { get; set; }
    public string Value { get; set; }
}

To be able to store SensorCustom entity in InfluxDB and retrieve it from database you should implement IDomainObjectMapper. The converter tells to the Client how to map DomainObject into PointData and how to map FluxRecord to DomainObject.

Entity Converter:

private class SensorEntityConverter : IDomainObjectMapper
{
    //
    // Parse incoming FluxRecord to DomainObject
    //
    public T ConvertToEntity<T>(FluxRecord fluxRecord)
    {
        if (typeof(T) != typeof(SensorCustom))
        {
            throw new NotSupportedException($"This converter doesn't supports: {typeof(SensorCustom)}");
        }

        //
        // Create SensorCustom entity and parse `SeriesId`, `Value` and `Time`
        //
        var customEntity = new SensorCustom
        {
            Id = Guid.Parse(Convert.ToString(fluxRecord.GetValueByKey("series_id"))!),
            Data = Convert.ToDouble(fluxRecord.GetValueByKey("data")),
            Time = fluxRecord.GetTime().GetValueOrDefault().ToDateTimeUtc(),
            Attributes = new List<SensorAttribute>()
        };
        
        foreach (var (key, value) in fluxRecord.Values)
        {
            //
            // Parse SubCollection values
            //
            if (key.StartsWith("property_"))
            {
                var attribute = new SensorAttribute
                {
                    Name = key.Replace("property_", string.Empty), Value = Convert.ToString(value)
                };
                
                customEntity.Attributes.Add(attribute);
            }
        }

        return (T) Convert.ChangeType(customEntity, typeof(T));
    }

    //
    // Convert DomainObject into PointData
    //
    public PointData ConvertToPointData<T>(T entity, WritePrecision precision)
    {
        if (!(entity is SensorCustom ce))
        {
            throw new NotSupportedException($"This converter doesn't supports: {typeof(SensorCustom)}");
        }

        //
        // Map `SeriesId`, `Value` and `Time` to Tag, Field and Timestamp
        //
        var point = PointData
            .Measurement("custom_measurement")
            .Tag("series_id", ce.Id.ToString())
            .Field("data", ce.Data)
            .Timestamp(ce.Time, precision);

        //
        // Map subattributes to Fields
        //
        foreach (var attribute in ce.Attributes ?? new List<SensorAttribute>())
        {
            point = point.Field($"property_{attribute.Name}", attribute.Value);
        }

        return point;
    }
}

The Converter could be passed to QueryApiSync, QueryApi or WriteApi by:

// Create Converter
var converter = new SensorEntityConverter();

// Get Query and Write API
var queryApi = client.GetQueryApiSync(converter);
var writeApi = client.GetWriteApi(converter);

The LINQ provider needs to know how properties of DomainObject are stored in InfluxDB - their name and type (tag, field, timestamp).

If you use a IDomainObjectMapper instead of InfluxDB Attributes you should implement IMemberNameResolver:

private class SensorMemberResolver: IMemberNameResolver
{
    //
    // Tell to LINQ providers how is property of DomainObject mapped - Tag, Field, Timestamp, ... ?
    //
    public MemberType ResolveMemberType(MemberInfo memberInfo)
    {
        //
        // Mapping of subcollection
        //
        if (memberInfo.DeclaringType == typeof(SensorAttribute))
        {
            return memberInfo.Name switch
            {
                "Name" => MemberType.NamedField,
                "Value" => MemberType.NamedFieldValue,
                _ => MemberType.Field
            };
        }

        //
        // Mapping of "root" domain
        //
        return memberInfo.Name switch
        {
            "Time" => MemberType.Timestamp,
            "Id" => MemberType.Tag,
            _ => MemberType.Field
        };
    }

    //
    // Tell to LINQ provider how is property of DomainObject named 
    //
    public string GetColumnName(MemberInfo memberInfo)
    {
        return memberInfo.Name switch
        {
            "Id" => "series_id",
            "Data" => "data",
            _ => memberInfo.Name
        };
    }

    //
    // Tell to LINQ provider how is named property that is flattened
    //
    public string GetNamedFieldName(MemberInfo memberInfo, object value)
    {
        return "attribute_" + Convert.ToString(value);
    }
}

Now We are able to provide a required information to the LINQ provider by memberResolver parameter:

var memberResolver = new SensorMemberResolver();

var query = from s in InfluxDBQueryable<SensorCustom>.Queryable("my-bucket", "my-org", queryApi, memberResolver)
    where s.Attributes.Any(a => a.Name == "quality" && a.Value == "good")
    select s;

Flux Query:

from(bucket: "my-bucket")
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["attribute_quality"] == "good"))

For more info see CustomDomainMappingAndLinq example.

Take

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s)
    .Take(10);

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> limit(n: 10)

Note: the limit() function can be align before pivot() function by:

var optimizerSettings =
    new QueryableOptimizerSettings
    {
        AlignLimitFunctionAfterPivot = false
    };

Performance: The pivot() is a “heavy” function. Using limit() before pivot() is much faster but works only if you have consistent data series. See #318 for more details.

TakeLast

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s)
    .TakeLast(10);

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> tail(n: 10)

Note: the tail() function can be align before pivot() function by:

var optimizerSettings =
    new QueryableOptimizerSettings
    {
        AlignLimitFunctionAfterPivot = false
    };

Performance: The pivot() is a “heavy” function. Using tail() before pivot() is much faster but works only if you have consistent data series. See #318 for more details.

Skip

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s)
    .Take(10)
    .Skip(50);

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> limit(n: 10, offset: 50)

OrderBy

Example 1:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    orderby s.Deployment
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> sort(columns: ["deployment"], desc: false)
Example 2:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    orderby s.Timestamp descending 
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> sort(columns: ["_time"], desc: true)

Count

Possibility of partial client side evaluation

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s;

var sensors = query.Count();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> stateCount(fn: (r) => true, column: "linq_result_column") 
    |> last(column: "linq_result_column") 
    |> keep(columns: ["linq_result_column"])

LongCount

Possibility of partial client side evaluation

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s;

var sensors = query.LongCount();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> stateCount(fn: (r) => true, column: "linq_result_column") 
    |> last(column: "linq_result_column") 
    |> keep(columns: ["linq_result_column"])

Contains

int[] values = {15, 28};

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where values.Contains(s.Value)
    select s;

var sensors = query.Count();

Flux Query:

from(bucket: "my-bucket")
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => contains(value: r["data"], set: [15, 28]))

Custom LINQ operators

AggregateWindow

The AggregateWindow applies an aggregate function to fixed windows of time. Can be used only for a field which is defined as timestamp - [Column(IsTimestamp = true)]. For more info about aggregateWindow() function see Flux's documentation - https://docs.influxdata.com/flux/v0.x/stdlib/universe/aggregatewindow/.

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp.AggregateWindow(TimeSpan.FromSeconds(20), TimeSpan.FromSeconds(40), "mean")
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> aggregateWindow(every: 20s, period: 40s, fn: mean) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])

Domain Converter

There is also possibility to use custom domain converter to transform data from/to your DomainObject.

Instead of following Influx attributes:

[Measurement("temperature")]
private class Temperature
{
    [Column("location", IsTag = true)] public string Location { get; set; }

    [Column("value")] public double Value { get; set; }

    [Column(IsTimestamp = true)] public DateTime Time { get; set; }
}

you could create own instance of IDomainObjectMapper and use it with QueryApiSync, QueryApi and WriteApi.

var converter = new DomainEntityConverter();
var queryApi = client.GetQueryApiSync(converter)

To satisfy LINQ Query Provider you have to implement IMemberNameResolver:

var resolver = new MemberNameResolver();

var query = from s in InfluxDBQueryable<SensorCustom>.Queryable("my-bucket", "my-org", queryApi, nameResolver)
    where s.Attributes.Any(a => a.Name == "quality" && a.Value == "good")
    select s;

for more details see Any operator and for full example see: CustomDomainMappingAndLinq.

How to debug output Flux Query

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", _queryApi)
        where s.SensorId == "id-1"
        where s.Value > 12
        where s.Timestamp > new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
        where s.Timestamp < new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
        orderby s.Timestamp
        select s)
    .Take(2)
    .Skip(2);
    
Console.WriteLine("==== Debug LINQ Queryable Flux output ====");
var influxQuery = ((InfluxDBQueryable<Sensor>) query).ToDebugQuery();
foreach (var statement in influxQuery.Extern.Body)
{
    var os = statement as OptionStatement;
    var va = os?.Assignment as VariableAssignment;
    var name = va?.Id.Name;
    var value = va?.Init.GetType().GetProperty("Value")?.GetValue(va.Init, null);

    Console.WriteLine($"{name}={value}");
}
Console.WriteLine();
Console.WriteLine(influxQuery._Query);

How to filter by Measurement

By default, as an optimization step, Flux queries generated by LINQ will automatically drop the Start, Stop and Measurement columns:

from(bucket: "my-bucket")
  |> range(start: 0)
  |> drop(columns: ["_start", "_stop", "_measurement"])
  ...

This is because typical POCO classes do not include them:

[Measurement("temperature")]
private class Temperature
{
    [Column("location", IsTag = true)] public string Location { get; set; }
    [Column("value")] public double Value { get; set; }
    [Column(IsTimestamp = true)] public DateTime Time { get; set; }
}

It is, however, possible to utilize the Measurement column in LINQ queries by enabling it in the query optimization settings:

var optimizerSettings =
    new QueryableOptimizerSettings
    {
        DropMeasurementColumn = false,
        
        // Note we can also enable the start and stop columns
        //DropStartColumn = false,
        //DropStopColumn = false
    };

var queryable =
    new InfluxDBQueryable<InfluxPoint>("my-bucket", "my-org", queryApi, new DefaultMemberNameResolver(), optimizerSettings);

var latest =
    await queryable.Where(p => p.Measurement == "temperature")
                   .OrderByDescending(p => p.Time)
                   .ToInfluxQueryable()
                   .GetAsyncEnumerator()
                   .FirstOrDefaultAsync();

private class InfluxPoint
{
    [Column(IsMeasurement = true)] public string Measurement { get; set; }
    [Column("location", IsTag = true)] public string Location { get; set; }
    [Column("value")] public double Value { get; set; }
    [Column(IsTimestamp = true)] public DateTime Time { get; set; }
}

Asynchronous Queries

The LINQ driver also supports asynchronous querying. For asynchronous queries you have to initialize InfluxDBQueryable with asynchronous version of QueryApi and transform IQueryable<T> to IAsyncEnumerable<T>:

var client = new InfluxDBClient("http://localhost:8086", "my-token");
var queryApi = client.GetQueryApi();

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s;

IAsyncEnumerable<Sensor> enumerable = query
    .ToInfluxQueryable()
    .GetAsyncEnumerator();
Product Compatible and additional computed target framework versions.
.NET net5.0 was computed.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed. 
.NET Core netcoreapp2.0 was computed.  netcoreapp2.1 was computed.  netcoreapp2.2 was computed.  netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard2.0 is compatible.  netstandard2.1 is compatible. 
.NET Framework net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen40 was computed.  tizen60 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (4)

Showing the top 4 NuGet packages that depend on InfluxDB.Client.Linq:

Package Downloads
SpmisNet.Data

Package Description

DeerNet.InfluxDb2

Package Description

MicroHeart.InfluxDB

Package Description

ToolNET.InfluxDB.SDK

时序数据库InfluxDB操作SDK

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
4.19.0-dev.15190 143 12/5/2024
4.19.0-dev.15189 50 12/5/2024
4.19.0-dev.15188 47 12/5/2024
4.19.0-dev.15178 53 12/5/2024
4.19.0-dev.15177 52 12/5/2024
4.19.0-dev.14906 120 10/2/2024
4.19.0-dev.14897 57 10/2/2024
4.19.0-dev.14896 52 10/2/2024
4.19.0-dev.14895 54 10/2/2024
4.19.0-dev.14811 71 9/13/2024
4.18.0 44,712 9/13/2024
4.18.0-dev.14769 71 9/4/2024
4.18.0-dev.14743 63 9/3/2024
4.18.0-dev.14694 60 9/3/2024
4.18.0-dev.14693 57 9/3/2024
4.18.0-dev.14692 55 9/3/2024
4.18.0-dev.14618 55 9/2/2024
4.18.0-dev.14609 54 9/2/2024
4.18.0-dev.14592 56 9/2/2024
4.18.0-dev.14446 80 8/19/2024
4.18.0-dev.14414 73 8/12/2024
4.17.0 9,714 8/12/2024
4.17.0-dev.headers.read.1 85 7/22/2024
4.17.0-dev.14350 52 8/5/2024
4.17.0-dev.14333 49 8/5/2024
4.17.0-dev.14300 45 8/5/2024
4.17.0-dev.14291 48 8/5/2024
4.17.0-dev.14189 62 7/23/2024
4.17.0-dev.14179 58 7/22/2024
4.17.0-dev.14101 146 7/1/2024
4.17.0-dev.14100 67 7/1/2024
4.17.0-dev.14044 71 6/24/2024
4.16.0 9,574 6/24/2024
4.16.0-dev.13990 70 6/3/2024
4.16.0-dev.13973 63 6/3/2024
4.16.0-dev.13972 62 6/3/2024
4.16.0-dev.13963 70 6/3/2024
4.16.0-dev.13962 65 6/3/2024
4.16.0-dev.13881 66 6/3/2024
4.16.0-dev.13775 79 5/17/2024
4.16.0-dev.13702 70 5/17/2024
4.15.0 2,874 5/17/2024
4.15.0-dev.13674 80 5/14/2024
4.15.0-dev.13567 85 4/2/2024
4.15.0-dev.13558 70 4/2/2024
4.15.0-dev.13525 76 4/2/2024
4.15.0-dev.13524 66 4/2/2024
4.15.0-dev.13433 77 3/7/2024
4.15.0-dev.13432 76 3/7/2024
4.15.0-dev.13407 73 3/7/2024
4.15.0-dev.13390 71 3/7/2024
4.15.0-dev.13388 68 3/7/2024
4.15.0-dev.13282 76 3/6/2024
4.15.0-dev.13257 76 3/6/2024
4.15.0-dev.13113 237 2/1/2024
4.15.0-dev.13104 73 2/1/2024
4.15.0-dev.13081 73 2/1/2024
4.15.0-dev.13040 71 2/1/2024
4.15.0-dev.13039 75 2/1/2024
4.15.0-dev.12863 123 1/8/2024
4.15.0-dev.12846 89 1/8/2024
4.15.0-dev.12837 81 1/8/2024
4.15.0-dev.12726 163 12/1/2023
4.15.0-dev.12725 83 12/1/2023
4.15.0-dev.12724 80 12/1/2023
4.15.0-dev.12691 84 12/1/2023
4.15.0-dev.12658 79 12/1/2023
4.15.0-dev.12649 82 12/1/2023
4.15.0-dev.12624 79 12/1/2023
4.15.0-dev.12471 107 11/7/2023
4.15.0-dev.12462 81 11/7/2023
4.14.0 60,806 11/7/2023
4.14.0-dev.12437 82 11/7/2023
4.14.0-dev.12343 94 11/2/2023
4.14.0-dev.12310 81 11/2/2023
4.14.0-dev.12284 84 11/1/2023
4.14.0-dev.12235 83 11/1/2023
4.14.0-dev.12226 81 11/1/2023
4.14.0-dev.11972 220 8/8/2023
4.14.0-dev.11915 118 7/31/2023
4.14.0-dev.11879 128 7/28/2023
4.13.0 22,442 7/28/2023
4.13.0-dev.11854 101 7/28/2023
4.13.0-dev.11814 111 7/21/2023
4.13.0-dev.11771 101 7/19/2023
4.13.0-dev.11770 110 7/19/2023
4.13.0-dev.11728 100 7/18/2023
4.13.0-dev.11686 99 7/17/2023
4.13.0-dev.11685 97 7/17/2023
4.13.0-dev.11676 113 7/17/2023
4.13.0-dev.11479 100 6/27/2023
4.13.0-dev.11478 100 6/27/2023
4.13.0-dev.11477 106 6/27/2023
4.13.0-dev.11396 106 6/19/2023
4.13.0-dev.11395 92 6/19/2023
4.13.0-dev.11342 103 6/15/2023
4.13.0-dev.11330 114 6/12/2023
4.13.0-dev.11305 105 6/12/2023
4.13.0-dev.11296 106 6/12/2023
4.13.0-dev.11217 109 6/6/2023
4.13.0-dev.11089 101 5/30/2023
4.13.0-dev.11064 110 5/30/2023
4.13.0-dev.10998 104 5/29/2023
4.13.0-dev.10989 108 5/29/2023
4.13.0-dev.10871 110 5/8/2023
4.13.0-dev.10870 95 5/8/2023
4.13.0-dev.10819 122 4/28/2023
4.12.0 13,754 4/28/2023
4.12.0-dev.10777 111 4/27/2023
4.12.0-dev.10768 116 4/27/2023
4.12.0-dev.10759 113 4/27/2023
4.12.0-dev.10742 110 4/27/2023
4.12.0-dev.10685 101 4/27/2023
4.12.0-dev.10684 104 4/27/2023
4.12.0-dev.10643 106 4/27/2023
4.12.0-dev.10642 108 4/27/2023
4.12.0-dev.10569 106 4/27/2023
4.12.0-dev.10193 147 2/23/2023
4.11.0 22,525 2/23/2023
4.11.0-dev.10176 117 2/23/2023
4.11.0-dev.10059 223 1/26/2023
4.10.0 7,117 1/26/2023
4.10.0-dev.10033 138 1/25/2023
4.10.0-dev.10032 138 1/25/2023
4.10.0-dev.10031 135 1/25/2023
4.10.0-dev.9936 2,214 12/26/2022
4.10.0-dev.9935 133 12/26/2022
4.10.0-dev.9881 126 12/21/2022
4.10.0-dev.9880 124 12/21/2022
4.10.0-dev.9818 133 12/16/2022
4.10.0-dev.9773 123 12/12/2022
4.10.0-dev.9756 130 12/12/2022
4.10.0-dev.9693 125 12/6/2022
4.9.0 9,846 12/6/2022
4.9.0-dev.9684 127 12/6/2022
4.9.0-dev.9666 132 12/6/2022
4.9.0-dev.9617 127 12/6/2022
4.9.0-dev.9478 120 12/5/2022
4.9.0-dev.9469 136 12/5/2022
4.9.0-dev.9444 119 12/5/2022
4.9.0-dev.9411 114 12/5/2022
4.9.0-dev.9350 123 12/1/2022
4.8.0 1,609 12/1/2022
4.8.0-dev.9324 126 11/30/2022
4.8.0-dev.9232 128 11/28/2022
4.8.0-dev.9223 126 11/28/2022
4.8.0-dev.9222 133 11/28/2022
4.8.0-dev.9117 139 11/21/2022
4.8.0-dev.9108 124 11/21/2022
4.8.0-dev.9099 134 11/21/2022
4.8.0-dev.9029 126 11/16/2022
4.8.0-dev.8971 129 11/15/2022
4.8.0-dev.8961 133 11/14/2022
4.8.0-dev.8928 135 11/14/2022
4.8.0-dev.8899 137 11/14/2022
4.8.0-dev.8898 131 11/14/2022
4.8.0-dev.8839 144 11/14/2022
4.8.0-dev.8740 122 11/7/2022
4.8.0-dev.8725 127 11/7/2022
4.8.0-dev.8648 124 11/3/2022
4.7.0 25,014 11/3/2022
4.7.0-dev.8625 133 11/2/2022
4.7.0-dev.8594 134 10/31/2022
4.7.0-dev.8579 135 10/31/2022
4.7.0-dev.8557 126 10/31/2022
4.7.0-dev.8540 118 10/31/2022
4.7.0-dev.8518 122 10/31/2022
4.7.0-dev.8517 131 10/31/2022
4.7.0-dev.8509 130 10/31/2022
4.7.0-dev.8377 133 10/26/2022
4.7.0-dev.8360 141 10/25/2022
4.7.0-dev.8350 138 10/24/2022
4.7.0-dev.8335 135 10/24/2022
4.7.0-dev.8334 137 10/24/2022
4.7.0-dev.8223 177 10/19/2022
4.7.0-dev.8178 131 10/17/2022
4.7.0-dev.8170 129 10/17/2022
4.7.0-dev.8148 138 10/17/2022
4.7.0-dev.8133 135 10/17/2022
4.7.0-dev.8097 122 10/17/2022
4.7.0-dev.8034 143 10/11/2022
4.7.0-dev.8025 129 10/11/2022
4.7.0-dev.8009 146 10/10/2022
4.7.0-dev.8001 150 10/10/2022
4.7.0-dev.7959 128 10/4/2022
4.7.0-dev.7905 135 9/30/2022
4.7.0-dev.7875 126 9/29/2022
4.6.0 2,714 9/29/2022
4.6.0-dev.7832 140 9/29/2022
4.6.0-dev.7817 138 9/29/2022
4.6.0-dev.7779 154 9/27/2022
4.6.0-dev.7778 150 9/27/2022
4.6.0-dev.7734 140 9/26/2022
4.6.0-dev.7733 140 9/26/2022
4.6.0-dev.7677 141 9/20/2022
4.6.0-dev.7650 147 9/16/2022
4.6.0-dev.7626 201 9/14/2022
4.6.0-dev.7618 192 9/14/2022
4.6.0-dev.7574 134 9/13/2022
4.6.0-dev.7572 133 9/13/2022
4.6.0-dev.7528 126 9/12/2022
4.6.0-dev.7502 140 9/9/2022
4.6.0-dev.7479 155 9/8/2022
4.6.0-dev.7471 144 9/8/2022
4.6.0-dev.7447 136 9/7/2022
4.6.0-dev.7425 128 9/7/2022
4.6.0-dev.7395 128 9/6/2022
4.6.0-dev.7344 133 8/31/2022
4.6.0-dev.7329 127 8/31/2022
4.6.0-dev.7292 125 8/30/2022
4.6.0-dev.7240 136 8/29/2022
4.5.0 2,618 8/29/2022
4.5.0-dev.7216 131 8/27/2022
4.5.0-dev.7147 136 8/22/2022
4.5.0-dev.7134 137 8/17/2022
4.5.0-dev.7096 141 8/15/2022
4.5.0-dev.7070 147 8/11/2022
4.5.0-dev.7040 168 8/10/2022
4.5.0-dev.7011 146 8/3/2022
4.5.0-dev.6987 148 8/1/2022
4.5.0-dev.6962 152 7/29/2022
4.4.0 14,751 7/29/2022
4.4.0-dev.6901 149 7/25/2022
4.4.0-dev.6843 143 7/19/2022
4.4.0-dev.6804 150 7/19/2022
4.4.0-dev.6789 146 7/19/2022
4.4.0-dev.6760 141 7/19/2022
4.4.0-dev.6705 156 7/14/2022
4.4.0-dev.6663 182 6/24/2022
4.4.0-dev.6655 140 6/24/2022
4.3.0 14,242 6/24/2022
4.3.0-dev.multiple.buckets3 170 6/21/2022
4.3.0-dev.multiple.buckets2 136 6/17/2022
4.3.0-dev.multiple.buckets1 142 6/17/2022
4.3.0-dev.6631 137 6/22/2022
4.3.0-dev.6623 145 6/22/2022
4.3.0-dev.6374 149 6/13/2022
4.3.0-dev.6286 153 5/20/2022
4.2.0 2,440 5/20/2022
4.2.0-dev.6257 150 5/13/2022
4.2.0-dev.6248 149 5/12/2022
4.2.0-dev.6233 154 5/12/2022
4.2.0-dev.6194 151 5/10/2022
4.2.0-dev.6193 145 5/10/2022
4.2.0-dev.6158 2,860 5/6/2022
4.2.0-dev.6135 156 5/6/2022
4.2.0-dev.6091 158 4/28/2022
4.2.0-dev.6048 157 4/28/2022
4.2.0-dev.6047 158 4/28/2022
4.2.0-dev.5966 160 4/25/2022
4.2.0-dev.5938 161 4/19/2022
4.1.0 3,415 4/19/2022
4.1.0-dev.5910 352 4/13/2022
4.1.0-dev.5888 160 4/13/2022
4.1.0-dev.5887 164 4/13/2022
4.1.0-dev.5794 164 4/6/2022
4.1.0-dev.5725 168 3/18/2022
4.0.0 8,683 3/18/2022
4.0.0-rc3 412 3/4/2022
4.0.0-rc2 562 2/25/2022
4.0.0-rc1 223 2/18/2022
4.0.0-dev.5709 159 3/18/2022
4.0.0-dev.5684 170 3/15/2022
4.0.0-dev.5630 171 3/4/2022
4.0.0-dev.5607 163 3/3/2022
4.0.0-dev.5579 166 2/25/2022
4.0.0-dev.5556 171 2/24/2022
4.0.0-dev.5555 158 2/24/2022
4.0.0-dev.5497 155 2/23/2022
4.0.0-dev.5489 168 2/23/2022
4.0.0-dev.5460 164 2/23/2022
4.0.0-dev.5444 158 2/22/2022
4.0.0-dev.5333 163 2/17/2022
4.0.0-dev.5303 158 2/16/2022
4.0.0-dev.5280 170 2/16/2022
4.0.0-dev.5279 170 2/16/2022
4.0.0-dev.5241 265 2/15/2022
4.0.0-dev.5225 159 2/15/2022
4.0.0-dev.5217 164 2/15/2022
4.0.0-dev.5209 156 2/15/2022
4.0.0-dev.5200 159 2/14/2022
4.0.0-dev.5188 160 2/10/2022
4.0.0-dev.5180 160 2/10/2022
4.0.0-dev.5172 163 2/10/2022
4.0.0-dev.5130 155 2/10/2022
4.0.0-dev.5122 163 2/9/2022
4.0.0-dev.5103 170 2/9/2022
4.0.0-dev.5097 169 2/9/2022
4.0.0-dev.5091 162 2/9/2022
4.0.0-dev.5084 164 2/8/2022
3.4.0-dev.5263 173 2/15/2022
3.4.0-dev.4986 163 2/7/2022
3.4.0-dev.4968 178 2/4/2022
3.3.0 8,702 2/4/2022
3.3.0-dev.4889 167 2/3/2022
3.3.0-dev.4865 173 2/1/2022
3.3.0-dev.4823 178 1/19/2022
3.3.0-dev.4691 177 1/7/2022
3.3.0-dev.4557 1,384 11/26/2021
3.2.0 5,919 11/26/2021
3.2.0-dev.4533 4,881 11/24/2021
3.2.0-dev.4484 242 11/11/2021
3.2.0-dev.4475 215 11/10/2021
3.2.0-dev.4387 191 10/26/2021
3.2.0-dev.4363 206 10/22/2021
3.2.0-dev.4356 204 10/22/2021
3.1.0 1,811 10/22/2021
3.1.0-dev.4303 206 10/18/2021
3.1.0-dev.4293 208 10/15/2021
3.1.0-dev.4286 186 10/15/2021
3.1.0-dev.4240 224 10/12/2021
3.1.0-dev.4202 182 10/11/2021
3.1.0-dev.4183 227 10/11/2021
3.1.0-dev.4131 192 10/8/2021
3.1.0-dev.3999 202 10/5/2021
3.1.0-dev.3841 280 9/29/2021
3.1.0-dev.3798 201 9/17/2021
3.0.0 1,223 9/17/2021
3.0.0-dev.3726 541 8/31/2021
3.0.0-dev.3719 188 8/31/2021
3.0.0-dev.3671 200 8/20/2021
2.2.0-dev.3652 195 8/20/2021
2.1.0 1,577 8/20/2021
2.1.0-dev.3605 200 8/17/2021
2.1.0-dev.3584 200 8/16/2021
2.1.0-dev.3558 190 8/16/2021
2.1.0-dev.3527 238 7/29/2021
2.1.0-dev.3519 237 7/29/2021
2.1.0-dev.3490 188 7/20/2021
2.1.0-dev.3445 210 7/12/2021
2.1.0-dev.3434 246 7/9/2021
2.0.0 9,034 7/9/2021
2.0.0-dev.3401 227 6/25/2021
2.0.0-dev.3368 212 6/23/2021
2.0.0-dev.3361 222 6/23/2021
2.0.0-dev.3330 219 6/17/2021
2.0.0-dev.3291 222 6/16/2021
1.20.0-dev.3218 239 6/4/2021
1.19.0 949 6/4/2021
1.19.0-dev.3204 209 6/3/2021
1.19.0-dev.3160 193 6/2/2021
1.19.0-dev.3159 190 6/2/2021
1.19.0-dev.3084 851 5/7/2021
1.19.0-dev.3051 215 5/5/2021
1.19.0-dev.3044 211 5/5/2021
1.19.0-dev.3008 206 4/30/2021
1.18.0 1,254 4/30/2021
1.18.0-dev.2973 225 4/27/2021
1.18.0-dev.2930 204 4/16/2021
1.18.0-dev.2919 202 4/13/2021
1.18.0-dev.2893 188 4/12/2021
1.18.0-dev.2880 207 4/12/2021
1.18.0-dev.2856 201 4/7/2021
1.18.0-dev.2830 298 4/1/2021
1.18.0-dev.2816 204 4/1/2021
1.17.0 797 4/1/2021
1.17.0-dev.linq.17 817 3/18/2021
1.17.0-dev.linq.16 197 3/16/2021
1.17.0-dev.linq.15 230 3/15/2021
1.17.0-dev.linq.14 234 3/12/2021
1.17.0-dev.linq.13 264 3/11/2021
1.17.0-dev.linq.12 215 3/10/2021
1.17.0-dev.linq.11 209 3/8/2021
1.17.0-dev.2776 233 3/26/2021
1.17.0-dev.2713 246 3/25/2021
1.16.0-dev.linq.10 1,251 2/4/2021
1.15.0-dev.linq.9 229 2/4/2021
1.15.0-dev.linq.8 203 1/28/2021
1.15.0-dev.linq.7 220 1/27/2021
1.15.0-dev.linq.6 237 1/20/2021
1.15.0-dev.linq.5 257 1/19/2021
1.15.0-dev.linq.4 220 1/15/2021
1.15.0-dev.linq.3 195 1/14/2021
1.15.0-dev.linq.2 211 1/13/2021
1.15.0-dev.linq.1 234 1/12/2021